
Tcl/Tk — An Integration Vehicle for the

Microwave/Millimeter–Wave Pilot Sites (MMPS)

Kevin B. Kenny, Brion D. Sarachan, Robert N. Sum Jr., and Wayne H. Uejio

GE Corporate R&D

P. O. Box 8, Building KW, Room C273

Schenectady, NY 12301

KennyKB@crd.ge.com
1

Abstract. Tcl/Tk has been chosen as an integration envi-

ronment for workstation software for DARPA’s Micro-

wave and Millimeter-wave Pilot Sites program (MMPS).

Under this program, GE has developed Tcl wrapper codes

for commercial application frameworks and to legacy

codes from the MMPS user community. Among the com-

mercial frameworks supported are the STEP Data Access

Interface (SDAI), the FrameMaker document prepara-

tion system and the Xess spreadsheet program2. These

codes have allowed us to build user interfaces that are

beginning to realize substantial productivity gains among

the microwave tube designers that use the system.

1. Introduction

The DARPA Initiative in Concurrent Engineering (DICE)

is a five-year program involving joint government-indus-

try-academic collaboration to develop automated support

for the concurrent engineering of complex products. The

initiative’s main emphasis is not to conduct basic research,

but rather to apply available technology, with small cus-

tom increments, to actual problems at industrial pilot sites.

One of these pilot projects is the Microwave and Millime-

ter-Wave Pilot Sites (MMPS), a multi-company effort to

demonstrate concurrent-engineering technology in the

microwave vacuum-tube industry. The stated goal of

MMPS is to replace lengthy and expensive build cycles

with computer analysis. In particular, it is to cut the time

required for an analysis cycle by 90%, broaden the user

base for the analysis codes by a factor of four, and reduce

the design cycle time for the test part by 70%.

1. This work was supported in part by the DARPA Initia-

tive in Concurrent Engineering (DICE) through DARPA

Contracts MDA972-88-C-0047 and MDA972-92-C-

0027, and by the Tri-Services Microwave and Millimeter-

wave Advanced Computational Environment (MMACE)

program under Naval Research Laboratory contract

N00014-92-C-2044.

2. FrameMaker is a registered trademark of Frame Tech-

nologies Corporation. Xess is a registered trademark of

Applied Information Systems Inc.

In order to achieve these goals, a high degree of software

integration is required. Multiple commercial frameworks

must be integrated with proprietary analysis codes to

present a unified interface to the engineer. Moreover, rapid

deployment of the software is essential, since the pilot pro-

gram lasts only eighteen months. To this end, off-the-shelf

software is used as much as possible, with a system of

wrappers connecting the various components [LEWI91].

The wrappers belong to four basic classes: tool-code wrap-

pers, which connect user codes into a user interface frame-

work; tool-data wrappers, which present objects from a

shared data model into a framework; tool-tool wrappers,

which implement communications among different user

interface components; and user interface wrappers, which

present the engineer with an “electronic design notebook”

in which to maintain and manipulate designs. Tcl/Tk has

proven to be a valuable framework to aid in building all of

these classes of wrappers.

Figure 1 shows a typical MMPS application’s user inter-

face, in this case, a design system for helix traveling wave

tubes. The user has elected to run a parameter study, vary-

ing several properties of the operating regime and of the

tube itself. The results are shown in the graph at the lower

right. This figure not only shows some of the salient fea-

tures of the interaction metaphor (for instance, the posi-

tioning of components using a mechanism like a word

processing tab ruler), but also gives an idea of the number

of components involved: the study requires integrating the

user interface, a surface plotting program, a database man-

ager, and several legacy codes for performing various sorts

of analysis and simulation of the device.

The MMPS team has experimented with a number of com-

mercial and legacy codes as components of the system.

Each of the components implements a different interaction

metaphor, all of which are required to support the engi-

neer. This presentation discusses our experience with sev-

eral of these, including the STEP Data Access Interface

(SDAI) [ISO89], the Xess spreadsheet program [AIS92],

and the FrameMaker [FRAM92] document preparation

system.



Figure 1. User Interface to Design Codes



2. Internals of the wrappers.

Tcl provides a common scripting and control facility to

which all the chosen application frameworks can connect,

so each of the wrappers has a component that is a Tcl

script. In most cases, the Tcl code is object based, in that

the commands that it executes identify first an object and

next an operation to execute upon that object. These object

commands are similar to Tk’s widget commands, where

one writes, for example, ‘widgetName configure’.

The commands that are implemented in C and linked with

the Tcl interpreter are, in fact, implemented in the same

way as the widget commands. An object creation com-

mand invokes Tcl_CreateCommand giving it the name

of a new object and a clientData argument that

describes the object. The Tcl objects represent objects in

the framework; for example, an object might represent a

spreadsheet, a document, a menu, or a dialog box.

SDAI. Central to the entire system is the concept of a

shared information model describing the product under

development. The Express language was chosen to

express the conceptual schema for the information, and the

STEP Data Access Interface (SDAI) [ISO89] is used to

access the data objects. The same SDAI interface can be

used with a variety of data bases, ranging from a simple

object system implemented using Tcl variables with styl-

ized names like

className:instanceName.fieldName

to an elaborate object system called ROSE provided by

STEP Tools Inc.

SDAI is a simple enough interface that no real benefit was

seen to breaking its objects out separately in the Tcl inter-

preter. Instead, the wrapper provides a single sdai com-

mand that performs all the data access, using

subcommands such as “sdai make_instance” and

“sdai set_field”. The data types in the interface are

simple enough that a very straightforward set of C func-

tions encapsulate all of them into Tcl. The system also pro-

vides a Tk-based browser that allows the user to peruse

various components of the schema and the objects in the

repository.

Xess. The team’s experience is that spreadsheet programs

provide a very natural interaction metaphor for the engi-

neering user to experiment with alternative designs, per-

form trade studies, and study “what if” scenarios. The data

that appear in the product model and the data that an anal-

ysis code uses can be mapped into spreadsheet cells, and

the analysis codes and data accessors can be represented as

spreadsheet functions or menu-driven operations. The

MMPS trial system has used the Xess [AIS92] spreadsheet

in this capacity. Tcl provides an important capability, since

Xess has an elaborate C-language API but no scripting

capability; providing Tcl bindings for the Xess API pro-

vided the missing functionality. The scripting capability

has proven to be so valuable that Applied Information Sys-

tems, the manufacturer of Xess, has announced that a

forthcoming release of the product will support scripting

in Tcl.

The Xess API is elaborate enough that Tcl object com-

mands are used to group API functions and manage the

API data (as clientData structures in the C functions).

Object commands are provided that represent spread-

sheets, menus, dialog boxes, graphics, and so on. The

operations on these objects correspond to the functions in

the API. Argument conversion functions are also provided

in the C code so that items such as cell addresses, cell

ranges, and printer fonts can be represented in their natural

forms. Several of the API functions, that configure the user

interface, accept elaborate data structures describing the

configuration. Option tables using Tk_ParseArgv were

designed so that the object commands could use the Tk

configure mechanism to represent these.

Some of the object commands have many subcommands

(the one representing a spreadsheet has almost eighty dif-

ferent functions). To streamline implementing these com-

mands, a Tcl script was written to preprocess the C source

code of the object commands, and generate a simple table-

driven recognizer for the command names. This technique

resulted in simpler and faster code than a series of

strcmp operations.

Many of the operations in the Xess API involve callbacks,

where Xess causes some operation to be performed in the

integrated application (that is, the Tcl script). A mecha-

nism analogous to the Tk bind operation is provided to

process these callbacks. The callbacks are requested by

means of PropertyNotify events in the X event

stream. In order to process these, a generic event handler is

established when the Xess interface is initialized to dis-

patch them through the Tk event manager.

The right-hand windows of Figure 2 show a sample user

interface integrated with the Xess spreadsheet, again

showing a front end to a helix-tube analysis code. The

spreadsheet presents a simple form that the engineer can

fill in with the most important design parameters. Menus

allow connections to the various analysis codes

(‘LINKS’), analysis of the design using the selected small

signal analysis code (“SMALL_SIG”), and saving the data

in an electronic design notebook (“EDN”).

FrameMaker. The FrameMaker [FRAM91] document

preparation system plays an important role in the proto-

type system. Electronic design notebooks [UEJI92], in

which designs are documented, are implemented in it. It

provides interactive help for several components of the

user interface, organized as hypertext, and accessible

directly from the interface (for instance, clicking the right



Figure 2. User interface based on commercial frameworks.

mouse button on a widget positions the document to the

description of that widget). Finally, it provides an unusual

means of data definition, in which the data description is a

document providing a ‘fill-in-the-blanks’ form that the

user edits, and a button embedded in the document

launches a conversion from that form to any of several

schema definition languages. The leftmost window in Fig-

ure 2 shows an EDN in operation, having just recorded

data from the spreadsheet on the right-hand side.

Just as with Xess, the FrameMaker product provided a rea-

sonably complete C API but no scripting capability, and

once again Tcl came to the rescue. The API was encapsu-

lated in a Tcl command called ‘fm’, with object com-

mands corresponding to the RPC channels which the

interpreter used to communicate with FrameMaker. The

FrameMaker data were simple enough that simple conver-

sions sufficed and no special parsing was necessary; the

only exception was that a huge (500-case) enumerated

type was represented in the Tcl script by symbolic names

rather than integers.

Event management posed a greater problem than with

Xess. Just as with Xess, callbacks were required into the

Tcl script from the FrameMaker program; these callbacks

came via RPC operations. The RPC system is normally

driven from its own event loop, but allows the user to sub-

stitute another event manager. One was written that

allowed establishing a file handler for every socket in the

RPC system with the Tk event manager.

Legacy codes. Most of the engineering analysis codes

were ‘dusty decks’ written in Fortran. A few simple read-

ers and writers were implemented in Tcl to process Fortran

NAMELIST files, and these allowed the (mostly batch-ori-

ented) Fortran codes to appear as Tcl functions. A few par-

ticularly intransigent codes are handled using the Expect

[LIBE91] system from NIST.

Callbacks are less of an issue for most of these codes, but

in a few cases the team wished to present partial results of

a long-running code in the user interface. This is accom-

plished by having a separate process contain a Tk script

that reads successive lines of output from a program and



sends them (using the Tk send command) to the parent

application.

3. Future directions for Tcl
and Tk — a wish list

The experience gained with the above wrappers suggests

some issues for future enhancements to Tcl/Tk.

Event management — “Whose process is this,
anyway?” Virtually all of the wrappers described

required peculiar code to interface to the Tk event loop.

Two simple enhancements would have greatly simplified

the implementation. The first is a mechanism, since imple-

mented in tclX as the addinput command, to execute

a Tcl callback when a particular file becomes ready. The

second is a special case in the event loop for file descrip-

tors that represent RPC channels; many APIs use RPC,

and the code to interface them to the Tk event manager is

cumbersome and slow.

Binding. Callbacks from external applications often

require argument substitution. There is, at present, no stan-

dard way to do this; even the bindings for X events are

becoming awkward because of class bindings. It would be

desirable for any improved binding system to provide sup-

port for arbitrary argument transmission, and to be acces-

sible to user event procedures.

Object management and security. The wrappers

described here all represent various real objects being

manipulated by the applications. As object brokers such as

CORBA [OMG92] and DDE [MICR91] become preva-

lent, it would be desirable to have the send and bind mech-

anisms use them. Not only would this improve data

interchange, but it would also enhance security by allow-

ing the object brokerage system handle the authentication

and privacy issues.

Dynamic linking. The wrappers often require extensions

to the core Tcl language. Because of various limitations of

the operating systems and the Tcl interpreter, it is not pos-

sible to connect to these at run time, requiring fairly elabo-

rate tricks to fabricate interpreters containing all the

required components. Even if dynamic linking should

prove impossible, an easier means of integrating user-writ-

ten extensions would be appreciated.

References

[AIS92] Xess Users’ Guide, version 2.1, Chapel Hill, NC:

Applied Information Systems, 1992.

[COST93] Coston, Arthur, personal communication.

[FRAM91] Integrating Applications with FrameMaker.

San Jose, CA: Frame Technologies Corpora-

tion, publication 41-01245-00, June 1991.

[ISO89] External Representation of Product Exchange

Data. ISO/TC 184/SC N38, 1989, available

from National Institute of Standards and Tech-

nology, Gaithersburg, MD.

[LEWI91] Lewis, J. W., et al., “Wrappers: integration ser-

vices and utilities for the DICE architecture.”

Proc. Natl. Conf. on CALS/CE, Arlington, VA,

June, 1991.

[LIBE91] Libes, D. “Expect: scripts for controlling inter-

active processes.” Computing Systems 4:2

(1991).

[MICR91] Microsoft Windows Software Development Kit:

Guide to Programming. Redmond, WA:

Microsoft Corporation, 1991.

[OMG92] The Common Object Request Broker: Architec-

ture and Specification. Document 91.12.1,

Object Management Group, 1992.

[OUST93] Ousterhout, J. K. An Introduction to Tcl and Tk.

Reading, MA: Addison-Wesley, to appear

1993.

[UEJI92] Uejio, W. H., et al., Capturing the corporate

memory of a product.” Enabling Technologies:

Proc National Conf. on Concurrent Engineer-

ing. Morgantown, WV, April, 1992.

Appendix: Availability of the
codes.

The various codes mentioned in this paper are available

for other investigators to use and modify. The Xess inter-

face is planned for release by AIS later this year. The inter-

faces to FrameMaker and to SDAI are available by writing

to the author at the postal or E-mail addresses given.

An interface to TCP streams that allows for Tk-like event

management and Tk-like ‘send’ operations in non-Tk-

based applications is available from the author or by anon-

ymous FTP at harbor.cs.purdue.edu in the file

pub/tcl/extensions/tclTCP.1.0.tar.Z

This interface is used to interconnect the various Tcl inter-

preters in the systems. This practice simplifies fabricating

the interpreters, since each interpreter requires only a few

extensions rather than the complete set.


